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We have investigated a sequence of dynamical systems corresponding to  spherical 
truncations of the incompressible three-dimensional Navier-Stokes equations in 
Fourier space. For lower-order truncated systems up to the spherical truncation of 
wavenumber radius 4, it is concluded that the inviscid Navier-Stokes system will 
develop mixing (and a fortiori ergodicity ) on the constant energy-helicity surface, 
and also isotropy of the covariance spectral tensor. This conclusion is, however, 
drawn not directly from the mixing definition but from the observation that one 
cannot evolve the trajectory numerically much beyond several characteristic corre- 
lation times of the smallest eddy owing to the accumulation of round-off errors. The 
limited evolution time is a manifestation of trajectory instability (exponential orbit 
separation) which underlies not only mixing, but also the stronger dynamical charac- 
terization of positive Kolmogorov entropy (K-system). 

1. Introduction 
I n  a homogeneous field with no mean motion, the nonlinear term of the incompressi- 

ble Navier-Stokes equations can be decomposed into enumerable triad interactions 
over infinitely coupled triad wavevectors ( 9  2).  By singling out a typical triad inter- 
action it was found (Lee 1979) that its dynamical system in the absence of viscosity, 
called the fundamental triad-interaction system, cannot be ergodic, let alone mixing, 
on the constant energy-helicity surface, nor will it develop isotropy of the covariance 
spectral tensor after a long evolution time. This was then attributed to the existence 
of extraneous constants of motion besides energy and helicity. Surprisingly, some of 
them are not strictly invariant, yet they can restrict the trajectory flow just as the 
true constants of motion. Based on an earlier result (Lee 1975), it was conjectured that 
more and more triad interactions added to  the dynamical system would annihilate 
the extraneous constants of motion, thereby engendering mixing in phase space. I n  
this paper, we shall follow through this conjecture by examining a sequence of dyna- 
mica1 systems with increasingly many triad interactions. To obtain such a sequence, 
the wavevector space will be truncated to retain only those wavevectors lying in a 
sphere of specified radius - the spherical truncation. The lowest-order truncation 
involves 22 triad interactions over 13 wavevectors lying in a sphere of wavenumber 
radius 4 3 .  We shall also examine several of the higher-order truncated systems extend- 
ing up to the spherical truncation of wavenumber radius 4 ( §  3). 

I n  the beginning, we had hoped to  provide a direct numerical test for ergodicity 
6 FLM I20 
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and mixing. However, this has proven untenable because the true trajectory cannot 
be computed for a sufficiently long time for such tests. Evidently, the culprit here is 
trajectory instability, whereby the two initially nearby trajectories break away from 
each other exponentially after a short threshold time. Unfortunately, a numerical 
consequence is the accumulation of round-off errors, which then impedes trajectory 
computation over a time period longer than several characteristic correlation times 
of the smallest eddy. The trajectory instability can best be quantified by an effective 
evolution time, beyond which one can no longer guarantee the accuracy of trajectory 
computation. This has been suggested by the two extremes. The effective evolution 
time is practically infinite in the absence of trajectory instability, whereas it is in the 
order of a typical characteristic correlation time when the system is mixing. Theoretic- 
ally speaking, trajectory instability is exhibited by K-systems; hence it is a stronger 
dynamical property than mixing. Similarly, mixing implies ergodicity. Finally, 
isotropy of the covariance spectral tensor follows from the mixing property (4 4). 

The computability problem as manifested by trajectory instability was first reported 
by Birkhoff & Fisher (1959) who observed irregular evolution of the initially smooth 
vortex sheets modelled by discrete point vortices. Later, it reappears as the predict- 
ability or internal-error-growth problem in numerical weather forecasting (Robinson 
1967; Lorenz 1969). Relevant is the more recent evidence of trajectory instability in 
a variety of model flow problems (McLaughlin 1976; Glaz 1977; Lee 1980). Although 
trajectory instability is detrimental to the numerical trajectory evolution, it is just 
the ingredient tJhat we need for the statistical turbulence formulation. This is because 
trajectory instability engenders the loss of initial information, thereby providing a 
logical link between the macroscopic irreversibility and dynamic reversibility. 

Numerical details of the lowest-order truncation are presented in $ 6  to demonstrate 
the sensitive dependence upon initial conditions, random trajectory, ergodic behaviour 
of modal energies, isotropy of the spectral tensor, decay of autocorrelation, and positive 
Kolmogorov entropy. The numerical result of the present paper is this. For the lowest- 
order truncation the effective evolution time is 110 under the condition described in 
$ 5 .  The effective evolution time then decreases monotonically with the increasing 
order of spherical truncation ( 5  7). It is therefore concluded that the three-dimensional 
Navier-Stokes system develops mixing as more and more triad interactions are 
included. 

I n  the absence of mean flow motion and boundary effects, the trajectory instability 
of the present paper is solely attributed to nonlinearity of the Navier-Stokes equations. 
It is what Liepmann (1979) called a dynamical instability of rapidly increasing three- 
dimensional perturbations, in contrast to laminar or viscous instability of the onset 
of turbulence. 

2. Triad-interaction representation 

analyse the velocity field U(x, t )  in a cyclic box of side L 
For the homogeneous field with no mean flow, it is most convenient to Fourier- 

Ui(x,t) = (27r/L)%EU,(k,t)expik.x (i = 1 , 2 , 3 ) ,  (1) 
k%=O 

where the wavevector k = (2n/L)n (ni = 0, k 1, f 2, ...). The incompressible fluid 
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motion can be spanned by the polarization vectors EP(k, f ; )  lying on a plane normal to 
the wavevector k: 

The orthonormal polarization vectors are given by (Lee 1979) 

1 
i 

- sin 8, cos E - cos 8, sin sin 4 
d( k, E) = cos 8, cos 5 - sin 8, sin sin f; , 

cos q k  sin f ;  

sin Bk sin E - cos 8, sin 

- cos ek sin f; - sin 8, sin 11, cos [ , 
COB f; 

i 
r2(k, f ; )  = i cos qk cos f ;  

where cos$ = k,/k' ,  sine, = k2/k',  cosy, = k ' / k ,  and sinq, = k , /k .  Here we shall 
assume k' = (k: + k i ) i  to be non-zero, for the zero wavevector is excluded from the 
expansion (I). Because of the parameter f;, which takes on any value in [0,2n], the 
specification of er(k, f ; )  is not unique. That is, the polarization vectors may be rotated 
arbitrarily about the wavevector k, as long as they lie in a plane normal to k, which 
is all that is required by the orthogonality. 

The flow representation by up(k, t ) ,  the triad-interaction representation, is equiva- 
lent to the vorticity form of homogeneous flow (appendix). Unlike the Fourier ampli- 
tude U,(k, t )  with three components (i = 1 , 2 , 3 ) ,  uP(k, t )  has only two components 
(p = 1,2); a not-insignificant reduction in the dynamical variables. The introduction 
of (1) and (2) into the incompressible Navier-Stokes equations in the usual manner 
gives the triad-interaction representation (/A, h,p = 1,2) 

where v is the kinematic viscosity. Here the symmetrized coupling coefficient is 
defined by 

where 
$ ~ l l ~ q p ( f ; )  = H$%l$,"(f;) + 95tI!g(f;)l, 

&$y(f;) = [k. @(q> 8 1  [m, Elf  EYP, 01. 
The coupling coefficients over a triad wavevector satisfy the constraints necessary 
for energy and helicity conservations. Hence the total energy and helicity conserva- 
tions are assured when arbitrarily many triad wavevectors are coupled according to 
the Navier-Stokes equations. In  writing (3), we have used the reality requirement 

W*(k) = W( - k), (4) 

which has the same form as the reality of Fourier amplitude U*(k) = U( - k). To 
preserve (4), however, demands that the polarization vectors are unaffected by wave- 
vector reversal 

Consequently, one finds that 

Since this assures equality of the evolutions of uP*(k, t )  and u p (  - k, t )  for all t ,  it is the 
dynamic reality requirement. 

EP(k, f ; )  = EP( - k, 4). 

$kip,, ( f ; )  = -#-kl-p, - q ( f ; ) .  
-P A, P -plA. p 

6-2 
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2 

* 
FIGURE 1. Three-dimensional wavevector lattice of ( & 1) x ( k 1) x ( k 1) .  

3. Lower-order systems of the spherical truncations 
For definiteness, the infinite set of equations (3) must be truncated at  a level 

appropriate for computation. To this end, let us first set L = 277, so that k = n. In  
other words, the wavevectors have only the integer components and the wavevector 
space is now a three-dimensional lattice with integer co-ordinates. The lowest-order 
truncation involves the wavevector lattice of ( f 1)  x ( 5 1) x ( & 1) as shown in figure 1. 
Of the 26 wavevectors (excluding the zero vector), only a half of them need to be 
considered, for the remaining half are redundant due to the reality condition (4). 
Without loss of generality, we shall therefore choose the 13 wavevectors lying on or 
above the (2, 3)-plane as indicated by the solid dots in figure 1. After reordering the 13 
wavevectors 

enumeration of (3) over these wavevectors gives a closed set of equations summarized 
in the following skeleton form: 

k, I k,, -k3 ki I k3, - k4 k, 1’69 -k, 
bp(k,f) = -i(( k, 1 - k 3 , k 1  ) + ( k3 I -k4,k1 ) + ( kCI 1 --k79 kl ) 

k3) -k19 -kz k4l -kj, -k3 k7l - k ~ ,  -k, 
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(k i ]k7 , -k8)  ( kil-k5,kio) (k i lk53-k i~ )  ( k ~ l - k w k 1 2 )  

k81 -kl,-k7 k i 0 ( ~ i , - k 5  -k1 , -k5  ki21ki,-k9 

+( k91 -k13,k1)+( k5l -k6,k2 )+( k81 -kg,k2 ) + ( ~ ~ L ~ ~ ~ ~ 2 ~ 2 )  

+( k71 -k12,k2)+( k5l -k7,k3 )+( k7l -k9,k3 )+(2~!~~~;!%) 

+ k7I-k,,k1 + k51-kio>-k1 + k5I-k1pkl + kgl-k127-ki 

kl I k9, - k13 

ki3 1 -k1, -k9 k6 1 -k29 -k5 k9 -k25 -k8 kll I k2, - k7 

’2 I ’59 - k6 k2 I k,, -k9 

k2 I k7, -k,2 k3 I k5, -k7 k3 I k77 - k9 

k12 I -k2, -k7 k7 I -k3, -k5 k, I -k3, -k7 k10 I k3, - k6 

k3 I - k8, kll 

kiiIk3,-k8 k12l - k 3 ~ - k 6  k13I -k3,-k8 k81 -k47-k5  

k3 I k6, - k12 k3 I k8, - k13 k4 I k5, -k8 
+(k81 -k11>-k3)+( k61 -’12,’3)+( k81 -’13,’3)+( ’51 -k8,k4 ) 

+( k 4 1 k 6 , - k 9  ) ( k4I -’7yk10) ( ’4Ik72- t ’” )}  

k6 1 -kg,k, + k7 I -klo, -k4 + k7 I -ki3,k4 . ( 5 )  
k9 1 -k49 -k6 kio I k4, - k7 k13 I - k43 - k7 

The following remarks are in order: (i) the column vector 

subsumes all flow variables of 13 wavevectors; (ii) the overhead dot denotes a/at ;  (iii) 
the viscosity has been suppressed; (iv) each column vector of the right-hand side has 
13 entries; shown explicitly in (5) are the non-zero entries, compressing out all zeros. 

Since each column vector signifies a fundamental triad interaction, the intent of 
( 5 )  is to show the 22 fundamental triad interactions coupled over 13 wavevectors at  
this level of truncation. Although (5) is meant to be schematic, it nevertheless conveys 
all the information necessary to generate the dynamic equation by the following rules. 
(i) Each entry of the column vector represents a term of the form 

u”(k t )  = [~”(k,) ,  ~”(kg) ,  . -. 9 u’&)] 

c $fly; p Uh* ( . )UP*( a). 

P 

(ii) The dots are then supplied by the triad-wavevector entry. First, the triad wave- 
vector as a whole represents the subscript of $. Second, the arguments of d * (  - ) and 
up*( * ) are given by the two wavevectors in the order in which they appear after a vertical 
bar. For instance, the entries of the first column vector of ( 5 )  do indeed represent the 
first three non-zero entries, all others being zero. Then, by the aforementioned rules 
we can at  once write down 

and the expression for the remaining column vectors may be recovered similarly. 
When the wavevector lattice is larger than that of figure 1, i t  becomes all but im- 

practicable to enumerate (3) by hand. However, there is no need to despair, because the 
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Upper k2 

3 
5 
7 
9 

11 
16 
25 
36 

Wavenumber 
radius 

1.73 
2.24 
2.56 
3 
3.32 
4 
5 
6 

Wavevectors 

13 
28 
40 
61 
85 

128 
257 
462 

Triad interactions 
or column vectors 

22 
106 
242 
549 

1059 
2 522 

10 186 
33 152 

TABLE 1. Some lower-order spherica,l truncations 

enumeration can readily be carried out with the aid of a computer, thereby systematic- 
ally sorting out the triad wavevectors allowed in a wavevector lattice of given trun- 
cation order. (From a computational standpoint, this enumeration once performed 
would eliminate the costly convolution summations.) It must be noticed that the 13 
wavevectors of figure 1 all lie in a sphere of wavenumber radius k = 4 3 ,  and no other 
wavevectors exist in that sphere. Hence ( 5 )  represents the spherical truncation of 
wavenumber radius k = 4 3 .  Summarized in table 1 are the pertinent results of spherical 
truncations up to the wavenumber radius k = 6. 

As seen from table 1, the numbers of wavevectors and, particularly, of fundamental 
triad interactions increase very rapidly with the truncation order. Even for a relatively 
low order truncation of wavenumber radius k = 6, compared with Orszag & Patter- 
son’s (1972) simulation code of k = 16, the 462 wavevectors give rise to 924 (462 x 2) 
dynamic variables. Hence the corresponding system would have 924 complex differen- 
tial equations with 33 152 right-hand-side column vectors; a non-trivial numerical 
task. For future reference, the first six truncated systems of table 1 will be denoted 
by D ( N ) ,  where N is the number of wavevectors retained. 

4. Theoretical background 
Because of many degrees of freedom, the investigation of D ( N )  will have to rely 

heavily on numerical analyses. It is therefore essential that a theoretical framework 
exists to guide us on what to compute and how to interpret it in support (or rejection) 
of certain dynamical propositions. To provide such theoretical guidance, it is neces- 
sary for us to review some basic results of classical statistical mechanics and modern 
dynamical systems, which are relevant to  the present conservative (inviscid) system. 
To begin with, let us simplify the notation by writing uC(t) = up(ki, t ) .  It is more ad- 
vantageous to resolve the motion of uf(t) by the polar representation 

uf(t)  = R$(t) exp (i271@(t)) 

into action Jf = (@)2 and angle w$. Because of the periodicity wr  = [w:, mod (l)], the 
identical points in rectangular representation uf may have an angle difference of 
integer multiples. 
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4.1. Energy and helicity conservation,s 

161 

For a given ki,  consider the Hermitian matrix 

It has been shown (Lee 1975) that the trace is modal energy Ei = lu:I2+ Iui12 and the 
sum of the off-diagonals times ki is modal helicity Hi = iki(ufu4'-u;u$'), ignoring 
any constant factor. The total energy and helicity are then 

E = 2 IufI2= 2 J t ,  
i=lp=1, 2 i = 1 p = 1 , 2  

N N 

N N 

i = l  i=l 
H = i 2 lc,(u:uq* - uiu:*) = 2 ki R: R; sin 2744  - w t ) ,  

in both representations. 

Ui is the column vector (u:, u;), 
Now, write the sum of all four elements of ( 6 )  in a Hermitian form U t d U , ,  where 

and + denotes the transjugate. Since the eigenvalues of d are 0 and 2, U:dUi is 
positive semi-definite. Note that U:d+& is also positive semi-definite, for sd and 
d+ have the same eigenvalues. Yet U Z d U ,  and i7td.q have different signs for their 
imaginary part ; hence we infer from these quadratics that 

Or, in polar representation, 
1u:p+ \u;p > li(u:u%*-u:u:*)l. 

J:  -I- J t  2 2R: Ri Isin 2 4 w :  - w $ ) l .  ( 7 )  

Multiplying both sides by ki and summing over i, we have 

Its  statistical form in isotropic field is k€(k)  2 / 2 ' f ( k ) / ,  where &(k)  and X ( k )  are 
respectively the isotropic energy and helicity spectra (Brissaud et al. 1973; Kraichnan 
1973). 

4.2. Classical Liouville theorem 

By splitting uf into the real and imaginary parts, u4 = vt + iw?, we find from (3) the 
incompressibility of phase space 

N c c (aq/av;+a~; /awp)  = 0; 
i=l p = l ,  2 

hence the volume element in phase space is an integral invariant. Or 

N c 2 (aJf/aJf+ah;/aq) = o 
i = l p = 1 , 2  

in action-angle variables (but not in Rf and wf, for they are not canonical variables). 
This is the content of the classical Liouville theorem, stating the preservation of 
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measure under the time evolution. Clearly the Liouville theorem will not hold in the 
presence of viscous damping; hence, it is a property of inviscid flow (conservative) 
systems. It was almost 30 years ago that T. D. Lee (S952) first showed that the Navier- 
Stokes equations in Fourier space obey the classical Liouville theorem, Although the 
measure-invariance is necessary for ergodicity and mixing (defined in 5 4.3)) it is too 
presumptuous to  infer ergodicity and, particularly, energy equipartition from the 
Liouville theorem alone (as is often implied in the literature). 

There are several technical comments. First, dynamical systems with an invariant 
measure return arbitrarily close to the initial points (recurrence theorem, Nemytskii 
& Stepanov 1960, chap. 6). However, the recurrence time (frequency of return), which 
is not given by the theorem, may be extremely long for a large-degree-of-freedom 
system (Hemmer 1959). Hence the return to initial state is practically inconceivable 
for D ( N )  even under the assumption of no chaos. Secondly, all recurrence motions are 
central motions, but the converse is not true (Birkhoff 1927, p. 198). Lastly, because 
of the measure invariance, the trajectory of an inviscid flow will not wind down to a 
submanifold of phase space. Hence one does not usually speak of an attractor of 
conservative systems, although an attractor may be defined to encompass the whole 
state space (Lanford 1976). 

4.3. Ergodicity and mixing 

For each k, there are two components ut(t) for ,u = S and 2 ,  each of which in turn 
splits into either vf and wt or Rf and wf. We can therefore span the phase space of D ( N )  
by the co-ordinates x = (xl, x2, . . ., xqLV} in 4N-dimensional Euclidean space. First of 
all, the trajectory of D ( N )  must lie on the surface of constant energy and helicity 
(3 4.1). Because of the measure invariance ( 5  4.2)) the initial volume element of, say, 
a unit (4N - 2)-dimensional sphere will spread over the constant energy-helicity 
surface, but without suffering any volume change. Ergodicity and mixing are the 
criteria on the shape of spreading volume element and the manner in which it proceeds. 
For phase function f(x) along a trajectory, one can compute the time average over a 
period t by $(x, t )  = t-l/tf(x, s )  ds. According to Birkhoff’s theorem (Khinchin 1949, 
p. 19), this average over a sufficiently long time, i.e. limt+wf(x,t), approaches a 
constant value $(x) for almost all initial conditions, when the trajectory is restricted 
to the invariant part of phase space. After the trajectory has traversed every extension 
of the phase space with equal frequencies? it is reasonable to  expect that f(x) should 
be close to that obtained by averaging f(x) over all possible extensions of the phase 
space. We shall denote the phase average symbolically by (f(x)) = /sf(x)dp(S), 
where p(S) is a normalized measure of the constant energy-helicity surface S. The 
system is said to be ergodic if and only if 

l imj(x, t )  = (f(x)). 
t+m 

Clearly, if the trajectory is restricted to  part of the phase space or if the phase space 
is split into two invariant parts of non-zero measure (metric decomposability), then 
it is not possible to  guarantee ergodicity. Hence the condition of metric in-decompos- 
ability has long been used synonymously with ergodicity. 

The numerical testing of ergodicity runs into two difficulties. First, the equality (8) 
should be checked out for all phase functions. Should there be found a phase function 
violating (8), t,he ergodic claim is nullified. In  practice, however, ergodicity is under- 
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stood to have been claimed for a certain class of measurable phase functions of physical 
importance (see Kells & Orszag (1978) and Glaz (1981) for the choice of phase functions 
for two-dimensional turbulence). The second difficulty is that the ergodic theorem is a 
statement about the equilibrium trajectory in the limit as t --f 00. One may then ask 
why we cannot evolve B(N)  over a sufficiently long time to test (8) in a sort of numerical 
quasi-equilibrium sense. Unfortunately, the answer is negative because of the emer- 
gence of a random or chaotic trajectory. Consequently, numerical trajectory evolution 
is restricted to several characteristic correlation times of a typical dynamic variable. 
Complete chaos is referred to as mixing in the phase space, which has the everyday 
analogy of mixing cream into a cup of coffee. Quantitatively, for any measurable 
functionsf(x) and g(x) the system is said to be (strong) mixing if (Arnold & Avez 1968, 
theorem 9.8) 

lim (m t )  = (f (XI) (g(x)). (9) 
t-tm 

Intuitively, in an ergodic system the trajectory covers every extension of the phase 
space with equal frequencies. However, when it does so in a random fashion the system 
is mixing. Mixing, therefore, implies ergodicity, but not vice versa. 

4.4. Ergodic dejinition of Khinchin 

As pointed out in $4.3,  ergodicity and metric indecomposability have long been 
defined in terms of each other. Khinchin has therefore attempted to  define ergodicity 
without resorting to the metric indecomposability. Let us begin by assuming that 

(f(x)) = 0. (10) 
This zero-mean condition is subject to verification, although it is plausible for f(x), 
which is a function of a single Fourier mode. Define a correlation function with respect 
to the zero initial time: 

Then Khinchin's theorem states that if p(t) -+ 0 for t -+ co the functionf(x) is ergodic 
(Khinchin 1949, p. 68). I n  fact, the claim of this theorem is too modest; it further 
implies mixing. To see this, we write (9) for f = g :  

p( t )  = (f(x, t)f(x, O)>/(f2(x)). 

lim (f (x, t)f(x,  0)) = (f (x)) (f (x)) = 0. (11 )  
t - tm 

The second equality follows from (10). (The derivation of (1 1) is also found in Lebowitz 
(1972).) Since (11)  is precisely the ergodic condition of Khinchin, his theorem may be 
considered more correctly as a mixing than an ergodic theorem. 

Since ergodicity does not imply mixing, one would never test for mixing unlessf(x) 
is known or suspected to be ergodic. In  other words, the establishment of ergodicity 
precedes the test for mixing. Since ergodicity means that phase and time averages 
are the same, we may recast p(t )  into the autocorrelation of the phase function evolved 
over T .  

defined similarly to that of Kells & Orszag (1978) for two-dimensional turbulence. 
Whence the content of Khinchin's theorem is 

limp(T,7) = 0 
'+ 50 

for T > 7 sufficiently large for good data sampling. 
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4.5. Microcanonical distribution 

We shall now express the normalized measure p(S) of 8 4.3 in terms of the phase-space 
co-ordinates. To this end, we write the modal energy and helicity in the Hermitian 
quadratic form 

where Yis the unit matrix and 

E ,  = U t 9 U , ,  Hi = UtLBiq ,  

By the transformation 
1 i  

@4 = 2-4 ( 
1) yi, 

the E, and Hi become diagonal (though Ei already is) in 
similarity transformation to the sums of Ei and Hi, we find that 

= (y!, y!). Extending the 

N N 

2 = 1  a = 1  
E = .z IY:I2+ IY!lZ, H = ,x U l Y : l 2 -  IY!I”. 

Now, rearranging the real and imaginary parts of yi in a sequence of 4 N  variables, 
and identifying this sequence with the x-co-ordinates already introduced in 5 4.3, the 
total energy and helicity may be put in the real quadratic form 

4 N  4N 

i = l  i = l  
E ( x )  = z x!, 

Here c, are not all distinct, and exactly half of them are negative. 
Since the energy-helicity surface is of the same type of quadratic constraint as the 

energy-enstrophy surface, by parroting the result of two-dimensional turbulence 
(Glaz 1977, Lee 1982) we can at once extend the classical Khinchin theorem to three- 
dimensional turbulence : 

H ( x )  = C C , Z ~ .  

Here 6 is the angle between grad E and grad H ,  and dC is a differential element of S. 
The parametrization of dC in terms of 4N - 2 co-ordinates may follow the procedure 
of two-dimensional turbulence. To complete the discussion of the right-hand side, 
however, it is necessary to show that S is smooth and connected (as was done by 
Glaz (1977) for the energy-enstrophy surface), which will not be pursued here. For 
the left-hand side V is the intersection of two phase spaces enclosed respectively by 
the constant energy and helicity surfaces. By extending the x-integration over all 
phase space with the use of unit step functions, an alternative form of (13) is obtained: 

We have thus established equivalence of the microcanonical distributions 

S(E-  E ( x ) )  S(H - H ( x ) )  

over all of x-space and l/lgrad El [grad HI sin0 on the energy-helicity surface S. 
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For instance, in terms of the latter distribution, the normalized measure p(S) gives 
rise to 

where Q(&) = I,dE/(gradE( IgradH] sin 6’ is the so-called structural function (Khin- 
chin 1949, p. 37).  

4.6. Canonical distribution 

Logically speaking, the canonical distribution is the asymptotic form of the a priori 
probability density dC/Igrad E I [grad HI sin 0 on the energy-helicity surface in the 
limit as N -too. The Gaussian distribution then emerges as a consequence of the 
central-limit theorem (Khinchin 1949, chap. 5). More provincially, however, we can 
write down the Gaussian canonical distribution as a function of the sum of constants 
of motion C,E, + C2 Hi, where C, and C2 are constants (Lee 1975) : 

I n  fact, this is an equilibrium solution of the Liouville equation and, moreover, is a 
stable equilibrium distribution (Kraichnan 1973). We first note the difference between 
the microcanonical and canonical distributions: the former is an a priori distribution 
on the constant energy-helicity surface 8, whereas the latter is a Gaussian distribution 
extending over all phase space. How can they then be related? To see this, recall the 
alternative expression of the microcanonical distribution, 6(E - E ( x ) )  6(H - H ( x ) ) ,  
which is peaked infinitely sharply on the submanifold S. Although a Gaussian distri- 
bution cannot peak out as sharply as the Dirac delta function, when we consider only 
a single component of ut the canonical distribution becomes more pronouncedly peaked 
about S as there are more components of @ included in the exponent. This is how the 
canonical (Gaussian) distribution can approximate the microcanonical (delta-function) 
distribution closely as N becomes large. 

Averaging over the canonical distribution, we find that (Lee 1975) 

Let us examine the consequence of (14 ) .  First, when helicity is zero C2 = 0, hence 
energy equipartition follows: 

(luil2) = (luil2) = l/Cl for all i .  (15)  

Secondly, in general C2 4 0 for non-zero helicity. Then (14a)  implies the equality of 
modal energy distributions for u: and u:, although there is no equipartition among i .  
Thirdly, (14b) gives the equilibrium helicity distribution 2Czk$/(C: - C; k:). Lastly, 
since (u:u;*) and (u:ua*) are purely imaginary, (14b)  implies the vanishing of the real 
part of the reflectional asymmetry, which is a condition for isotropy to be discussed 
in 54.7.  
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4.7. Isotropy of the wvariance spectral tensor 

In three-dimensional turbulence, the isotropy requirements for the covariance spectral 
tensor are the spherical, rotational and reflectional symmetries (Lee 1979). In inviscid 
flow, both the spherical and rotational symmetries are realized by the energy equi- 
partition. The reflectional asymmetry, however, manifests itself in real and imaginary 
parts. Helicity is the imaginary part of the reflectional asymmetry, which we can a t  
will set equal to zero since it is a constant of motion. Hence the real part of the reflec- 
tional asymmetry given by 

N m 

i= l  i = l  
U, = x (u:u:* - u:u~* )  = 2 C Ri R: cos 2 7 ~ ( ~ i  - w;)  (16) 

is the only thing that remains to be examined. According to (14b), the phase-average 
(U,) vanishes identically. Hence isotropy of the covariance spectral tensor is indeed 
consistent with the canonical distribution. 

4.8. Kolmogorov entropy 

Mixing is engendered by the trajectory instability, whereby the two nearby trajec- 
tories become separated exponentially in phase space with the evolution time; hence 
it is also called the exponential orbit separation (Sinai 1973). Consider an open set of 
initial states. If the system is mixing, the initial open set will spread out randomly 
(e.g. Lee 1979, figure 10) and eventually cover the entire energy-helicity surface in 
the limit as t -+ 00. In fact, the open set of trajectories does not grow in actual size 
owing to measure invariance. It is the mutual distance of trajectories that becomes 
large as evolution proceeds. Trajectory instability can be quantified by the Kolmogorov 
entropy adapted from the one proposed by Benettin, Galgani & Strelcyn (1976). To 
define such a metric entropy, however, calls for explicit computation of trajectories 
of initial proximity. Since the trajectory is dependent on the initial condition I ,  the 
parameter [, and the initial To and final evolution time T ,  we shall adopt the notation 
D ( N ,  I ,  [, To, T )  to  include all the parameters. (Note that D ( N )  is still reserved for a 
generic notation when the parameter values are of no direct concern.) 

Let us denote by U the trajectory of D(N,I ,[ ,T, ,T)  on the constant energy- 
helicity surface. As mentioned in $4.2,  the representation of U may consist of the 
real and imaginary components vf and wf, respectively. To speak precisely of the 
distance of another trajectory U‘ with the corresponding components v ; ~  and w;p, 

from U we introduce a Euclidean norm 

I” N 

1) u - U‘ 11 = [ x (vf - v;q2 + (wf - w ; y  . 
i = l / 4 = 1 , 2  

At To = 0 we consider an initial condition I, that is removed from I by a small distance 
d, i.e. 1) I - I,(l = d, and evolve the trajectory from it over a pre-assigned time interval 
A7. At the end of the first time interval (0, A7), we then compute the trajectory distance 
by 

d1 = IID(N, I ,  t , O ,  AT) - D ( N ,  Io,[,O, A7)II- 

Note that the trajectories of D(N,  I, 6, 0, A7) and D ( N ,  I,, [, 0, A7) do not necessarily 
lie on the same energy-helicity surface. Now, for the second time interval (A7,2A7), 
we specify a new initial point I, that is again a distance d away from the U at T = A7, 
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U / I  
FIGURE 2. Computational schematics for Kolmogorov entropy. 

i.e. D ( N ,  I ,  f ,  0, AT). After evolving the trajectory from I, over Ar, we compute the 
trajectory separation by 

d ,  = l /D(N , f ,  t, 0 , 2 A 7 ) - - ( N ,  11, E ,  0, A~) l l ,  

for the second time intervaI (AT,  AT). I n  a similar fashion, the trajectory separation 
of successive time intervals can be computed to yield a sequence of positive numbers 
{dj}  for j  = 1,2,3, .  . . . Figure 2 sohematizes the computation of {aj}, which differs from 
figure 1 of Benettin et al. (1976) in that, for instance, Il is not in general required to 
lie on the dotted-line segment connecting D ( N ,  I ,  5, 0, AT) and D ( N ,  I,, 5, 0, Ar). As 
will be discussed in 0 6, however, this difference is irrelevant. Benettin et al. (1976) 
defined an entropy-like quantity by 

They have observed from the numerical study of zl Hamiltonian system (e.g. the 
H6non-Heiles (1964) model) that when U is in regions of the phase space exhibiting 
chaos then (i) the long-time limit of summation settles down to a constant value, i.e. 
limn+co  AT, U ,  d )  = k(A7, U ,  d )  for suitably chosen AT and d ,  (ii) k(Ar, U ,  d )  is 
independent of Ar, and (iii) k(A7, U , d )  is independent of d. Under these conditions 
we may identify k(Ar, U ,  d )  with the Kolmogorov entropy (Lyapunov characteristic 
numbers). A dynamical system with positive Kolmogorov entropy is called a ‘K- 
system ’, which is EL stronger characterization than mixing (Sinai 1973). 

For non-random trajectories (including a quasi-periodic motion), on the other hand, 
limn--tm kn(Ar, U ,  d )  is non-positive. Hence the Kolmogorov entropy can provide a 
means for discerning stochastic islands of the phase space from the ordered (non- 
random) region. 

4.9. Trajectory instability 

Trajectory instability, t o  be distinguished from numerical instability, has been en- 
countered for a long time in fluid dynamics, although it has only recently been identified 
as such. The first evidence was reported more than 20 years ago by Birkhoff & Fisher 
(1 959), who observed irregular evolution of the initially smooth vortex sheets modelled 
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by discrete point vortices. Their work, however, did not receive due attention because 
the idea of an irregular fluid trajectory was incompatible with computational fluid 
dynamics. Nevertheless, trajectory instability has resurfaced in the late 1960s, but 
now in the numerical prediction of meteorological flows (Robinson 1967, Lorenz 1969). 
It is the so-called predictability or error-growth problem in numerical weather fore- 
casting, the viability of which is known to be limited to only a few days (Leith 1978). 
However, considerable evidence accumulated in recent years clearly indicates that 
trajectory instability manifested by the limited evolution time is not an isolated inci- 
dent. In  fact, it occurs in a variety of model flow problems, such as the BBnard con- 
vection problem (McLaughlin 1976), the inviscid Burger’s model (Lee 1980) and two- 
dimensional inviscid turbulence (Glaz 1981). 

As a matter of fact, trajectory instability manifests itself in a dichotomic manner. 
On the one hand, it gives rise to the sensitive dependence of D ( N )  on the initial 
condition. Since this implies the loss of initial information, D ( N )  can exhibit macro- 
scopic irreversibility of a trajectory motion that is dynamically reversible; an ingre- 
dient necessary for statistical mechanics. It must be pointed out that Ruelle (1979) 
has recently proposed the asymptotic decay of the time-correlation function defined 
exactly as in ( 1  1) as a practical test for the sensitive dependence of dynamical systems 
on the initial condition. 

On the other hand, one cannot compute the trajectory over a long time period 
because of the accumulation of round-off errors. Note that digital computers have a 
finite accuracy, and numerical trajectory computation is, at best, an attempt to 
approximate the true orbit (integral curve) with a finite number of digits. At any time 
step of integration, therefore, the difference in numerical and true orbits, however 
small it may be, will grow exponentially by the very definition of trajectory instability. 
The computed orbit will eventually depart from the true trajectory drastically; hence 
it is called a pseudo-orbit. 

For the Anosov system (Y-system), however, the dichotomy of trajectory instability 
can be conciliated, and can thereby provide a logical link between dynamics and 
statistics. Benettin et al. (1978) have shown that for Anosov systems time averages 
computed from a pseudo-orbit are identical with those computed from the true orbit, 
although the pseudo-orbit may be completely different from the true orbit. This is 
based on a theorem of Anosov and Bowen which states roughly that near a pseudo- 
orbit of an Anosov system there are (infinitely) many true trajectories (originating, of 
course, from some other initial states), all of which would give rise to the same time 
average over a long time. Intuitively speaking, since the Anosov system is a model of 
a completely unstable system, one may expect that the deviation of the pseudo-orbit 
from the true orbit is so random that its time-averaged effect is zero owing to can- 
cellations. 

Since the claim of Benettin et al. (1978) has also been verified on stochastic systems 
which are not strictly of Anosov’s type, we shall assume that their work is applicable 
to our system D ( N ) .  This then enables us to compute time averages much beyond the 
evolution time for the true trajectory. 

Summing up, trajectory instability presents us with a choice: either to formulate 
the turbulence problem for long-time statistics, or to simulate it numerically but only 
for a short-time dynamics. We therefore come to echo Prigogine’s (1979) view that 
statistics begins where dynamics stops. 
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5. Effective evolution time of the lowest-order system 
In  this paper, the numerical integration was performed by the solver package ODE 

developed and documented by Shampine & Gordon (1975). At the risk of misquoting, 
let us venture to say that the ODE is a variable-step, variable-order Adams-Bashford 
predictor and Adams-Moulton corrector code. Since the internal working of ODE is 
of no direct concern, we shall restrict ourselves here to the use of it as a black box, but 
communicating only with the input/return flag (IFLAG). Both the relative and abso- 
lut,e error tolerances, RELERR and ABSERR, are used to control the local error by 

(local error1 = RELERR'Iapproximated ut l+ ABSERR. 

Since by design u$ < 1, we shall always set RELERR = 0 and specify only the abso- 
lute error tolerance. By successively reducing ABSERR by the factor of 0.1, i.e. 
ABSERR = lo-', lo-*, etc. it was found that on CDC CYBER 74/175 the smallest 
ABSERR that ODE can cope with is 10-13. (In other words, ODE will automatically 
boost the error tolerance when ABSERR = 10-14 is imposed.) That this is perhaps the 
smallest ABSERR may be seen from the unit round-off error of CDC single precision, 
which Shampine & Gordon (1975) have estimated to be 7.1 x lO- l5 .  Hence, all nu- 
merical experiments were carried out with RELERR = 0 and ABSERR = 
unless otherwise stated. 

Shampine & Gordon (1975, p. 122) proposed a global error estimate by the re- 
integration, whereby one reintegrates the problem with the reduced error tolerance 
by an order of magnitude and compares the results (also adopted by Glaz (1977) for 
two-dimensional turbulence). However, this is not really relevant to  our application 
of the open-ended evolution time. Rather, the pertinent question is how long can we 
evolve D ( N )  before the accuracy of trajectory computation is in doubt. This question 
can best be dealt with by the forward-backward time integration, whereby one 
integrates the problem in forward time up to a predetermined value and then in back- 
ward time to recover the initial condition. (Note that ODE is well suited for this; 
one simply has to reverse the sign of the time step, DT = - DT, for the backward 
time integration.) When there is no accumulation of round-off errors, one should 
recover the initial data, of course, within the order of ABSERR, independent of the 
integration time period. Therefore, the recovery of initial data after a forward- 
backward time integration can provide an overall measure of computational accuracy. 

For the test of initial data recovery, D( 13) was integrated in forward and backward 
times under the initial condition 113 defined by 

In = {Rt = (2n)-4, 05 = & (p = 1,2;  i = 1,2,  ..., n)). 

The interpretation of In will be given in 3 6. The forward-backward time integration 
was carried out for three T = 110, 120 and 130, but all under 6 = # and ABSERR = 
10-13. The result of forward time evolution D( 13, 113, Q ,  0, T) followed by backward 
time evolution D( 13, D( 13, 113, Q ,  0, T), Q,  T, 0 )  can best be summarized by super- 
imposing the recovered initial data on the imposed initial data. Since 113 has equal 
action and angle for all modes, it is simply represented by a single point, denoted by * in figure 3, in the phase plot of 92(u&) and 9(ua). For T = I10 the recovery of 
initial data appears quite good; at least as shown graphically in figure 3(a); the 
recovered initial data points, denoted by 0, coincide with the imposed initial-data 
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Forward-backward time integration of D(13) under 6 = Q ant 
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~~ ABSERR = 10-13. *, initial condition I13; 0, recovered initial data. (a) Evolution time T = 110; ( 6 )  T = 120; 
(c )  T = 130. 

point. Quantitatively, however, the deviations of recovered Rf and w: from the 
respective initial values ,I& and & do not exceed +0.75%; hence this maximum 
deviation will hereinafter be adopted as a criterion of good recovery. With a slightly 
increased T = 120, figure 3 ( b )  shows some scatter in the recovered initial data. But 
a further increase in T renders the recovery of initial data all but impossible; as 
attested to by the widely scattered data pointsof figure 3 (c). Because of the periodicity 
of = [wf ,  mod (l)] mentioned in 5 4, figure 3 (c) gives only a partial account of recovery 
failure in that the recovered initial data points may not all lie on the same Riemann 
sheet. To examine this, we have presented the time histories of oi and w i  during the 
forward time integration in figure 4 (a) ,  and during the backward time integration in 
figure 4 ( b ) .  Since the recovered oi falls below the initial value + by more than unity, 
we now know that the recovered ui of figure 3 ( c )  lies in a Riemann sheet different 
from that of I13. 

In  conclusion, based on the f 0.75 yo maximum deviation, the largest T has been 
found to be 1 1 0  under ABSERR = 10-13. Although T varies with the choice of I and f;, 
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FIGURE 4. Time histories of w: and wi .  ‘1’ = w ; ;  ‘2’  = 0:. (a) Forward time integration 
D(13, I,,, Q, 0, 130). (b) Backward time integration D(13, D(13, I,,, 8, 0, 130), #, 130, 0). 

1 - 0 . 2  
FIGURE 5. Forward-backward time integration of D(13) under .$ = Q over the evolution time 
T = 110.*, initial condition Ila; 0, recoveredinitial data. (a) Error tolerance ABSERR = 10-1*; 
(b) ABSERR = 10-11. 

Total number of derivative 
evaluations for 

log,, (ABSERR) D(13, 113, Q, 0, 110) Reference 

- 13 8559 Figure 3 (a) 
- 12 5429 Figure 5(a)  
- 11 3457 Figure 5(b) 

TABLE 2. Comparison of the number of derivative evaluations 

we shall take this T as a typical effective evolution time of 0(13), beyond which 
evolution would give a pseudo-orbit (§ 4.9). Now, to show strong dependence on the 
error tolerance, the forward-backward time integration of figure 3 (a) has been re- 
peated, but under less stringent error controls. Under ABSERR = the recovered 
initial data of figure 5 ( a )  show modest spread about II3, whereas figure 5 ( b )  clearly 
indicates that T = 110 is too large when the error tolerance is ABXERR = 10-l1. 

Numerically, energy and helicity are conserved only approximately. We have 
observed that deviations in energy and helicity conservations are less than ABXERR 
by a t  least one order of magnitude within the effective evolution time. This is why 
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monitoring the energy and helicity conservations cannot forewarn of numerical 
catastrophe; a similar view was expressed by Glaz (1977) for the two-dimensional 
turbulence. 

Departing for now from the numerical accuracy, the set of computations underlying 
figures 3 (a), 5 (a,  b )  can provide a comparison of computing costs, which escalate rap- 
idly with the more stringent error tolerance. We have summarized in table 2 the total 
number of derivative evaluations incurred during the evolution of D( 13, 113) 3 ,  0, 110) 
under three ABSERRs. 

Assuming that computing cost is directly proportional to the number of derivative 
evaluations, this being the case for a large system such as D( 13), one can infer from 
the table that tightening ABSERR by two orders of magnitude has resulted in more 
than doubling the computing cost. 

+ .., 
- (2nh'l)-l &ii\l[3,kl R; Rf cos 2n(@ + wC - 0;) 
(2nR;)w1 $!FJ&, kz R:R[ COS 2 T ( W :  + W i  - U:) 

0 

0 

6. Numerical results of the lowest-order system 
Owing to the limited evolution time, it is not possible to provide a direct test for 

ergodicity (8) and mixing (9), which necessitates an equilibrium trajectory. According 
to the theoretical discussion of 3 4, however, the limited evolution time is a sufficient 
numerical testimony of trajectory instability that is also possessed by K-systems 
and Anosov systems. W'e shall present here some numerical details of D(13) that 
indicate ergodicity and mixing and isotropy of the covariance spectral tensor. As a 
matter of fact, we have shown something stronger; the D(13) has a positive Kolmo- 
gorov entropy, and hence is a K-system. 

By the polar transformation, the dynamic equation (5) can be expressed in terms of 
R; and w; ; 

>. (18b) 
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69)) which is to  be expected from the periodicity of polar representation as pointed 
out in J 4. The result of rectangular representation can then be expressed in action- 
angle variables in a straightforward manner. First, JC is the squared magnitude 1u;Iz. 
Secondly, o$ is computed by the convention that the positive (negative) angle is 
referred to  the clockwise (counterclockwise) rotation. 

From (18) we can at once infer the invariant set 

Y = {arbitrary R: and of such that + w i  - w3p, o; + o$ - w;, 

w:+o,p-o$, ... = +$, &g, +;,...>. 
Note that of + to$ - w& are the arguments of sines and cosines. Clearly, for such WC the 
right-hand sides of (18 6 )  are identically zero, and remain so for all t .  Only the ampli- 
tudes R: then evolve dynamically by (1 8 a) ,  in which sine terms are k 1. An interesting 
subset of 9' is 

9" = (arbitrary R$ and oi = w; such that 

w:+oz'-o,' ,6J:+w~-o,", ... = *Q, -t$, *$, ...>. 
Since of = o;, each of the terms sin 2n(wt - oi) is zero, and remains so for all t .  That 
is, Y' is a submanifold of the phase space, independent of helicity, and hence is, 
perhaps, exceptional. 

I n  $5  we have already used the initial condition 

I,, = {R: = 425, 05 = Q (p = 1,2;  i = 1,2,  ..., 13)}, 

which represents zero helicity ( H  = 0 ) ,  for wf = o: at the initial time. By reversing 
the sign of w i  in 113, we have 

Ii3 = {Rf  = J&, of = -u; = (p = 1,2;  i = 1 , 2  ,..., 13)), 
which, according to (7 ) ,  represents the maximum helicity, since Isin 2n(wf -o;)\ = 1 .  
An intermediate helicity may be represented for instance by 

I 3  = {lg = &) ok = *,o: = 0 (p = 1,2;  i = 1,2,  ..., 13)). 

Our contention is that 113, Ii3 and Iy3 can generate typical trajectories of zero helicity, 
maximum helicity, and an intermediate helicity, respectively (as will be discussed 
below under the heading Sensitive dependence on the initial conditions). Unlike energy 
and enstrophy of two-dimensional turbulence, which are interdependent, one may 
assign helicity quite arbitrarily (but between the zero and maximum values), inde- 
pendent of energy. For instance the zero helicity corresponds to isotropic tiirhulence ; 
hence most of the numerical experiments to  be reported below have been evolved 
from I13. I n  an attempt to detect possible separation of the phase space into random 
and ordered regions (e.g. HBnon & Heiles 1964), we have tested other initial data 
besides 113 and Ii3 and I ig .  However, no such separations have been observed. This 
conclusion is, a t  best, only tentative in that there are (infinitely) many other initial 
data yet to be tested. 

A last comment before presenting numerical results is that overall (macroscopic) 
dynamics are not sensitive to the choice of 6,  except for 6 = i. It has been shown 
(Lee 1979) that 6 = $ imposes extraneous symmetries on the coupling coefficients, 
and hence will be excluded from further consideration. We shall therefore use one of 
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FIGURE 6. Exponential orbit separation of the (solid-lined) trajectory of D( 13, II3,  #, 0, 25) from 
the (dotted-lined) trajectory of D(13, I:;, 8, 0, 25). *, initial point; 0, final point. Phase plots 
of (a )  u;; (b)  u;; (c )  u;; (d) us. 

the four values = 0, #, and 0.87654, more or less arbitrarily for the numerical results 
to be presented here. 

Sensitive dependence on the initial conditions. Let us consider another initial condi- 
tion 

I& = {R$ = d&, OJ$ = &+0.00582,' (,!A = 1,2; i = 1 ,2  ,..., 13)}, 

which differs slightly only in the phase of u:; otherwise it is completely identical with 
II3.  In  figure 6 we have presented the simultaneous trajectories of D(13, 113, 8, 0,25) 
and D(13, Ir3, $, 0,25),  which break away from each other in such a, manner that, 
after a short time T = 25, they do not show any sign of the initial proximity in phase 
space. I n  other words, the divergence of initially nearby trajectories is completely 
unpredictable; hence the precise details of trajectory are quite sensitive to the init.ia1 
conditions. However, when certain time averages are considered, random be- 
haviour of the trajectory gets averaged out. This therefore permits us to use a single 
initial condition, such as 113, to generate a generic trajectory, from which typical 
statistics may be computed, independently of the choice of initial data. 
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FIGURE 7. Random trajectory of D(13, I,,, #, 0, 130). +$, initial point; 
0, final point. Phase plots of (a) u i ;  (b)  uio; (c )  ui ;  (d) u:~ .  

Random trajectory. As was alluded to by the phase plots of figure 6, D( 13) develops 
apparently random trajectories. Figure 7 contains some typical phase plots of 
D(13,II3,#,0, 130). The choice of 27 = 130 was made to match the evolution time of 
figure 12, which calls for anevenlonger evolution time for autocorrelation computations. 
Two observations are relevant here. First of all, the phase plots show no inaccessible 
annular region such as found in figures 6 (d- f )  of Lee ( 1979); hence the trajectory flow 
is apparently unconstrained in the phase space. Secondly, the phase plots in general 
tend to cover all four quadrants. In particular, the phase plot of figure 7 (a )  traverses 
the four quadrants more uniformly and randomly than the remaining figures 7 (b-d). 
When 9(u$) and are considered as phase functions, uniformly and randomly 
traversing phase plots will satisfy the zero-mean condition (10). In this respect, we 
may say the trajectory of figure 7 (a)  obeys the zero-mean condition more faithfully 
than those of figures 7 ( b d ) .  

Ergodic behaviour of modal energies. We shall present here a limited test for ergodi- 
city (8) by restricting the phase functions to be the modal energies J:. The reason for 
this choice of phase functions is that their phase averages have already been computed, 
based on the canonical distribution, which approximates the microcanonical distri- 
bution quite satisfactorily for the present system of 52 degrees of freedom. Recall the 
following result: energy equipartition ( 15) prevails under zero helicity, whereas in the 
non-zero helicity case the phase-averaged modal energies ( J $ )  and (J:)  have the 
same distribution (14a). We have presented in figures 8 and 9 the time-averaged 
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FIauRE 8. Tirne-averaged actions of D( 13, I,,, 0.87 654, 0, 120) representing zero helicity. 
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Time = 120 
FIQURE 9. Tirne-averaged actions of O(13, Ii3,  0.87654, 0, 120) representing maximum helicity . 



Mixing and isotropy in inviscid ?Lomogeneous turbulence 177 

i 0 

Time = 120 
FIGURE 10. Time-averaged actions of D(13, I:,? 047654,  0, 120) representing 

an intermediate helicity. 

actions under the initial conditions 113 and Ii3,  respectively. For zero helicity, figure 
8 indicates a tendency towards energy equipartition. On the other hand, figure 9 
depicts the equality of modal energy distributions under a maximum helicity. It is 
noted that figures 8 and 9 are intended for qualitative inference only. To be quantita- 
tive, we need to extend the evolution time much beyond T = 120, which we shall not 
do because the mixing property stronger than ergodicity will be demonstrated later on. 

As mentioned in the beginning of this section, although extreme, the choice of zero 
and maximum helicity is not at all exceptional (non-generic). Theoretically this is 
evident from the equilibrium distribution (14), which depends continuously on C, 
and C,. To lend a further numerical support, we have presented in figure 10 the time- 
averaged actions under an intermediate helicity. Note that qualitatively the long- 
time energy distribution lies somewhere in-between figures 8 and 9. 

Decay of u,. Under energy equipartition, isotropy of the covariance spectral tensor 
calls for the disappearance of the real part of the reflectional asymmetry U,, given by 
(16). The phase average (U,> based on the canonical distribution is identically zero 
(34.7). Weshallnow computeitstimeaveragefrom thetrajectoryofD(13, Ii3, O , O ,  120). 
As shown in figure 1 1, the asymptotic decay of a, has been brought about by random 
oscillations of the time history of U,. 

Decay of autocorrelation functions. Under the ergodic assumption, let us compute 
the autocorrelation pt(T, 7) for <%'(uf) as defined by (12). (The correlations for 9 ( u f )  
will not be discussed here, for they exhibit more or less the same decay behaviour as 
pf( t ,  7).) Figure 12 presents autocorrelation functions computed from the same 
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FIGURE 11. Evolution of the real part of the reflectional asymmetry of 
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FIGURE 12. Autocorrelation functions generated from the trajectory of D(13, 113, 3, 0, 130). 

Correlations of (a) W(u!) ; ( b )  W(u:,) ; ( c )  W(ui) ; (d) W(u:,). 

trajectory as in figure 7. Figure 12 (a) typifies the majority of p:) whereby correlation 
falls off rapidly and decays with damped oscillations. However, it would be misleading 
not to mention some anomalous cases, such as those depicted by figures 12 (b-d). First 
of all, the correlation of figure 12 ( b )  decays, but very gradually in the time range that 
pi has undergone several oscillations. That is, &, has a much longer correlation time 
than pi.  Secondly, the correlation of figure 12(c) falls off initially, but remains at a 
higher level even toward the end of 7. This is clearly a reflection of the somewhat 
mildly erratic trajectory of figure 7 (c). Lastly, the correlation of figure 12 (d )  lies well 
above zero for the entire range of 7 .  We suspect this to be a consequence of the violation 
of the zero-mean condition (10). 

Since the anomalies are due mainly to insufficient evolution time, we shall recom- 
pute figures 12 (b-d), but with a much longer T = 250. Of course, the justification for 
computing autocorrelations from a pseudo-orbit is derived from the observation of 
Benettin et a2. (1978) that the Anosov-Bowen theorem (04.9) is applicable not only 
to Anosov systems, as originally intended, but also to some other systems (e.g. the 
Hbnon-Heiles model) exhibiting chaos. The recomputed correlations are shown in 
figure 13. Note that figure 13(a) extends over 7 = 150 to permit development of 
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FIGURE 13. Autocorrelation functions generated from the trajectory of D( 13, 113, Q, 0, 350). 

Correlations of (a) W(u:,,) ; ( b )  9(u:) ; (c )  9f(uiP). 

correlation over several correlation times. To a large degree, the anomalies of pf( 1 3 0 , ~ )  
have disappeared in pT(350, T ) ,  thereby indicating the mixing property of D(13). 

Kolmogorov entropy. The trajectory of D( 13) 113, 8) 0,300) will be designated as the 
reference U of $ 4.8. For the first time interval (0, AT), we evolve a neighbouring tra- 
jectory from the initial condition 

I 0 -  - { R f = J + X , w j = w ; = g + A w  ( p =  1 , 2 ; i =  1 ,2  )..., 13))) 

which represents a shift of all angles of I,, by Au.  Typically, we let Aw = 0.002; hence 
the initial distance is d = [ ] Io -  11311 2: 0.012566. For the second time interval (AT) 2A7) 
we shall specify the initial condition Il as follows. First note that each mode of I, is 
displaced from 113 by the same distance [&( 1 - cos 2nAw)lJ. Consider U a t  T = AT, 
and denote its real and imaginary componants by Gf and 6;) respectively. We then 
define each mode of Il by requiring that it has the same magnitude [(v"f)2+ ( Z Z ~ ) ~ ] *  as 
U a t  T = AT) but its angle is shifted by 

1 1 - cos 2nAw 
-arccos 1 - 
2n ( 26[(ij$), + (632] 

to  maintain the same distance [&( 1 - cos SnAw)]*. Then the distance of I, from U 
at T = AT would be exactly d 2: 0-012566. A similar procedure can be repeated for 
the initial condition I,, and so on. Although there is nothing unique about our choice 
of initial conditions I,, I,, . . . , the only justification is that  the computed k,(AT, U ,  d )  
are insensitive to Aw (and henced), as called for by condition (iii) of $4.8. For instance, 
either by halving Aw (=  0.001) or reversing the direction of angle shift, the maximum 
deviation in k,(AT, U , d )  has been found to  be less than 0.1 %. 

Next, to  check conditions (i) and (ii) of 9 4.8, we have computed JC,(Ar, U ,  d )  under 
several values of AT. One finds from figure 14 that kn(Ar, U , d )  settle down to constant 
values of all AT. Hence condition (i) is apparently satisfied. Yet the limiting values 
k(A7, U , d )  are not the same, and thereby violate condition (ii). However, this is 
inevitable because the entropy computation is possible only for certain values of AT. 
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FIGURE 14. Kolmogorov entropy based on the reference trajectory D(13, I,,, 4, 0, 300). 
0, AT = 3; 13, 6 ;  A ,  9 ;  0 ,  12; 3#i, 18; x, 21. 

That is, there are upper and lower limits for AT. Note that the smallest time interval 
AT = 3 in figure 14 is about half the typical correlation time estimated from figure 
12 (a). For AT < 3, it has been found that some of the terms In (d,/d) become negative, 
so that FC,(AT, U , d )  decrease steadily with increasing n. That is, nearby trajectories 
are actually being drawn in together, rather than breaking away from each other, in 
some time intervals. Since the decreasing ,%,(AT, U ,  d )  imply a non-random trajectory 
(Benettin et aE. 1976), we may identify AT = 3 as a threshold time for the apparent 
trajectory instability. Now, as AT ( > 3) increases, so does  AT, U ,  d ) ,  but at agradually 
decelerating rate. For AT > 18, however, one finds that a decreasing trend sets in, as 
indicated by k(21, U , d )  in figure 14. This is because the Euclidean metric (17) cannot 
discern different Riemann sheets, so that the trajectories with a shrinking distance (17) 
may indeed be diverging from each other when the angle variation is correctly taken 
into account. 

In conclusion, the violation of condition (ii) is inevitable. It must, however, be 
noted that the computed k(A7, U , d )  also depends on the reference trajectory U .  
Since the spread of  AT, U , d )  in figure 14 is well within its variation for different 
reference trajectories, we shall accept figure 14 as numerical evidence for positive 
Kolmogorov entropy. Hence, D( 13) may be said to be a K-system. 

7. Towards mixing as the truncation order increases 
Because of trajectory instability, it was not possible to evolve the true trajectory 

of D( 13) for T > 110 to provide a direct test for ergodicity and mixing. Yet the limited 
trajectory evolution was a sufficient manifestation of mixing in that trajectory in- 
stability has further led to positive Kolmogorov entropy, which is a stronger dynamical 
characterization than mixing. In  $ 5  the effective evolution time was adopted as a 
practical measure of limited evolution time. This has been motivated by the con- 
sideration that the effective evolution time is practically infinite in the absence of 
trajectory instability, whereas it is in the order of a typical characteristic correlation 
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FIGURE 15. Effective evolution time determined from the forward-backward time integration of 
D ( N )  under 6 = # andIN. 0, ABSERR = 10-13; 13, 10-l1; A ,  0, lo-’. 

time when the system is mixing. However, it is well known (Monin & Yaglom 1975, 
p. 340) that in fully developed turbulence the characteristic time scale of a typical 
eddy decreases with decreasing eddy size (increasing wavenumber). One therefore 
expects that the effective evolution time should decrease with increasing N ,  if the 
truncated system D ( N )  exhibits enhanced mixing, as more and more triad interactions 
are included. To test this numerically we have carried out the forward-backward 
time integration of D ( N )  for five values of N beyond N = 13 to  determine effective 
evolution times based on the f 0.75 yo recovery criterion set forth in 3 5. Figure 15 
summarizes the results of forward-backward time integration under the same para- 
meter 6 = + and initial condition IN as in figure 3. The effective evolution time under 
ABSERR = 10-13 is denoted by 0 in figure 15. The decreasing trend of the figure is a 
macroscopic indication of tendency towards mixing as increasingly many triad 
interactions are included in D ( N ) .  In  the limit as N -+ a, the effective evolution time 
will be in the order of the eddy-circulation time of the smallest eddy, which however 
decreases without bound in the inviscid case. Hence the inviscid flow becomes virtually 
uncomputable. This has been demonstrated explicitly in a Burger’s model (Lee 1980). 

Also included in figure 15 are the effective evolution times of D ( N )  under less- 
stringent error tolerance ABSERR = lO-l1, and lo-’. Two things are note- 
worthy. First, the effective evolution time falls off with increasing N under all 
ABSERRs. Secondly, for a fixed order of truncation, the effective evolution time 
decreases significantly with increasing ABSERR. Based on the estimate of table 2, 
the computing cost can be more than halved by relaxing the ABSERR by two orders 
of magnitude. Therefore, although tempting to use a larger ABSERR for the sake of 
computing economy, one should be aware of the price paid for in terms of a smaller 
effective evolution time. 

In  conclusion, we have shown that the effective evolution time decreases monotonic- 
ally with increasing order of spherical truncation. Hence the Navier-Stokes system 
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develops mixing on the constant-helicity surface, as we have speculated from the 
consideration of constants of motion. 

The referee’s reports have been invaluably helpful in the presentation of this paper. 
Their comments have in fact resulted in a complete overhaul of the original manu- 
script with the inclusion of a new theory section 4 to  differentiate clearly the proven 
facts from numerical conjectures. I also wish to  thank my colleagues Don Clemm, 
Paul Nikolai and Dennis Quinn for their help in overcoming numerous programming 
problems. Finally, correspondence with Dr L. Shampine should also be acknowledged. 

Appendix : the vorticity interpretation of up(k, t )  
The vorticity o ( k )  is related to  U ( k )  by the definition (omitting the factor i) 

w ( k )  = k x U ( k ) .  (A 1) 

Because of the incompressibility k .  U ( k )  = 0, k ,  U ( k )  and w ( k )  form a set of right- 
handed orthogonal vectors. Hence solving (A 1) for U ( k )  gives U ( k )  = o ( k )  x k ,  
which in detail is 

Since the three column vectors are all orthogonal to k ,  one of them must be linearly 
dependent. Let us then eliminate the superfluous one, say the first column vector 
(0, - k3, k,), with the use of k.o (k)  = 0 to  give 

U ( k )  = C2W2(k) +c3u3(k). (A 2) 

Here the column vectors c2 = (k3 ,  k ,  k3 /k l ,  - k’,/lc,) (where k f 2  = kf + k i )  and 

are independent but not orthogonal. One may then take k and 

c2/c2 = (k,k,/kk’,  k,k,/kk‘,  - k ’ / k )  = e2 

as the two basis vectors and find the third (by the Gram-Schmidt procedure), which 
is el = ( -  k, /k’ ,  kl/lc’, 0). Spanning by the new vectors el and e2, (A 2 )  becomes 

U ( k )  = elwl(k) +e2w2(k), (A 3) 

where d ( k )  = (k2 /k ’ )  w3(k) and w2(k) = (kk’/k,)w,(k) + (kk,E,/k,k‘)o,(k). Since el 
and e2 are identical (except for the sign) with d ( k ,  0) and e2(k, 0 ) ,  respectively, we 
have shown that (A 3) is equivalent to  the polarization-vector expansion ( 2 )  for 

= 0. The new variables uIi(k,t) are, indeed, linear combinations of the vorticity 
components. Since el and e2 are but one of the infinite choices of basis vectors, the 
role o f t  is to parametrize this arbitrariness. 
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